Texaco
10.02.2016

Выбор смазки для высокоскоростных подшипников

На большинстве промышленных предприятий используются подшипники, частота вращения которых превышает частоту вращения обычного технологического оборудования. По этой причине к вопросу выбора смазки нужно подходить со знанием дела, так как ошибка при выборе смазки может привести к перегреванию подшипников, возникновению избыточного трения и преждевременному выходу из строя. Правильно подобранная смазка помогает подшипникам справляться с нагрузками при высоких скоростях и позволяет свести к минимуму возможные неисправности, возникающие по причине несоответствия смазки области ее применения.


Область применения высокоскоростных смазок

На заводах меня часто спрашивают о температуре, при которой подшипники должны работать. Неоспоримым является тот факт, что подшипники, которые работают на высокой скорости, имеют более высокую температуру. Приведу такой пример: во время своего последнего визита на завод я осматривал подвесной вентилятор, оснащенный прямой ременной передачей от большого электродвигателя. Частота вращения двигателя составляет 1750 оборотов в минуту (об/мин). Поскольку размер шкива не менялся ни в сторону уменьшения, ни в сторону увеличения, можно с уверенностью сказать, что частота вращения подшипников была практически одинаковой. Эти подшипники были обработаны смазкой слишком гутой консистенции, что приводило к перегреву и, соответственно, к сокращению срока их службы. Продлить срок службы подшипника можно путем подбора смазки, свойства которой максимально соответствуют поставленной задачи.

Здесь в качестве примера приведена ситуация с механизмами, которые используются на большинстве заводов (вентиляторы), однако высокоскоростные компоненты применяются и в других механизмах. Например, некоторые насосы с прямым приводом  от двигателя, оснащенные  подшипниками, для смазки которых используется пластичная смазка, могут работать при частоте вращения более 2000 оборотов в минуту. То же самое справедливо и в отношении некоторых смесителей, мешалок и воздуходувок. Эти компоненты выходят из строя, если смазывать их подшипники универсальной пластичной смазкой, не учитывая их характеристики. Чтобы определить, какая смазка подойдет подшипнику, необходимо узнать скоростной фактор подшипника.

  Тип смазки

Вязкость базового масла (40°С), сСт

Скоростной фактор (NDM)

  Низкая скорость, высокое давление, промышленная смазка 1000-1500  50000
  Средняя скорость, высокое давление, смазка для промышленных   подшипников 400-500 200000
  EP, NLGI #2, универсальная смазка 100-220 600000
  Высокая скорость, высокая температура, смазка длительного действия <70 600000
  Высокая скорость, смазка длительного действия 15-32 >1000000



Расчет скоростного фактора

Значение скоростного фактора помогает узнать соотношение скорости, при которой вращается подшипник, и его размера. Существуют два основных способа определения этого фактора. Первый называется скоростным фактором DN, чтобы выяснить значение которого необходимо умножить значение внутреннего диаметра подшипника на значение скорости, при которой он вращается. Второй метод называется скоростным фактором NDm. Для его определения используется медианный размер подшипника (также известный как диаметр начальной окружности) и частота вращения.
С помощью скоростного фактора можно определить ряд свойств смазочного материала, которые необходимо учитывать при выборе правильного типа смазки. К таким свойствам относится вязкость масла и класс по NLGI (National Lubricating Grease Institute –Национальный институт пластичных смазок).




Вязкость

Наиболее важным физическим свойством смазки является вязкость. Вязкостью определяется толщина слоя смазки в зависимости от нагрузки, частоты вращения и контактирующих поверхностей. Вязкость должна отвечать требованиям подшипника. Вязкость базового масла большинства смазок общего назначения составляет, примерно, 220 сантистоксов. Смазки такого типа подходят для работы при средних нагрузках и средней частоте вращения. Если частота вращения подшипника выше среднего, вязкость должна быть меньше.


  Рабочая температура   DN (скоростной фактор)   Класс по NGLI*
  от -30 до 100°F (от -34,4 до 37,7°С)       0-75000   1
  75000-150000   2
  150000-300000   2
  от 0 до 150°F (от -17,7 до 65,5°С)       0-75000   2
  75000-150000   2
  150000-300000   3
  от 100 до 275°F (от 37,7 до 135°С)
 
  0-75000   2
  75000-150000   3
  150000-300000   3
  * Зависит от других факторов, таких как тип подшипника, загустителя, вязкость и тип базового масла  

Существует много способов определения вязкости. Если вы знаете значение скоростного фактора, речь о котором шла выше, вы можете воспользоваться стандартными схемами определения вязкости смазки для подшипника при рабочей температуре. В вышеприведенном примере (подшипник вентилятора) скоростной фактор NDm равнялся 293125, следовательно, вязкость базового масла должна составлять, примерно, 7 сСт. Подшипник работал при температуре около 150°F или 65,5°C. При стандартном индексе вязкости (равном 95) это приравнивается к марке вязкости базового масла ISO 22-32. Если бы вы использовали стандартную универсальную пластичную смазку, подшипник получил бы в 10 раз больше вязкости, чем ему требуется. Хотя не всегда избыток вязкости это плохо, однако в данном случае такое значение является завышенным.

Чрезмерная вязкость может привести к перегреву и повышенному потреблению энергии. Оба эти фактора являются неблагоприятными для подшипника и смазки. Чем выше температура подшипника в работе, тем меньше становится вязкость смазки. Это может привести к увеличению расхода смазки и требует более частого нанесения смазочного материала. Потребление энергии также может вырасти со временем, в результате чего возникнут необоснованные дополнительные затраты. Кроме того, избыточная вязкость приводит к повышенному трению.

Что касается обычных пластичных смазок, их можно использовать для смазывания подшипников при скоростном факторе до 500000. Если скоростной фактор превышает указанное значение, необходимо использовать высокоскоростную смазку. Некоторые смазки, представленные на рынке, могут работать при скоростном факторе до 2000000. Тем не менее, стоит отметить, что все смазки разные, и не все из них могут быть эффективными при разных скоростях.

  Влияние состояния подшипника на выбор вязкости базового масла

  ISO VG (сСт@40°С)   Область применени
Нагрузка   

Скорость   
 Маслоотделение*
Перекачиваемость*   
  22   Быстроходные шпиндели   Низк.   Выс.     Выс.   Выс.   
  100   Большие высокоскоростные
электродвигатели
                                               
  150   Колесные подшипники
  220   Бумагоделательные машины,
универсальная, индустриальная
  460   Бумагоделательные машины,
сталепрокатные станы
  1000   Горно-шахтное оборудование,
дробилки, подшипники и т.д.
1500   Низкие скорости, тяжелые/ударные нагрузки
  * На сепарацию и перекачиваемость масла также влияет плотность смазки и тип загустителя.

  ** Стрелками показана направленность.



Каналообразование

Одним из свойств пластичной смазки, которое помогает определить, каким образом смазочный процесс будет осуществляться при высоких скоростях, является каналообразование. Этот термин используется для определения текучести смазки и ее способности заполнять пустоты на поверхности. Проверить каналообразование смазки можно с помощью испытаний по Методу 3456.2 Федерального стандарта методов испытаний 791C. Для проведения этих испытаний необходимо нанести на поверхность равномерный слой смазки. Когда температура стабилизируется, по слою смазки проводят стальной полосой, известной как инструмент для проверки каналообразования. В результате в слое смазки образуется пустота или канал. Через 10 секунд необходимо проверить, заполнился ли образовавшийся канал смазкой. Если канал заполнился смазкой, значит, это смазка «обволакивающего» типа. В ином случае перед вами смазка «необволакивающего» типа.

Смазки «обволакивающего» типа быстро вытесняются при вращении элемента – в результате смазка не пенится, а температура не увеличивается. Смазки «необволакивающего» типа затекают обратно, что может привести к перегреву.

Тип загустителя

Кроме вязкости базового масла еще одним свойством смазки, которое влияет на каналообразование, является тип загустителя. Загуститель в смазке представляет собой этакую губку, которая удерживает масло. Структура волокон загустителя может оказывать влияние на определенные свойства смазки, такие как каналообразование, водостойкость, температура каплепадения и пенетрация. Волокна загустителей могут быть длинными или короткими. Загустители с короткими волокнами имеют более гладкую текстуру. Более сложные загустители, а также загустители, в состав которых входит литий, кальций, полиуретан и кремний, имеют короткие волокна. Каналообразование смазок с такими загустителями, как правило, лучше. Кроме того, они легче перекачиваются.

Каналообразование загустителей с длинными волокнами, например, тех, которые содержат натрий, алюминий и барий, как правило, хуже. Длинные волокна загустителя способствуют вспениванию, что может привести к изменению консистенции. Кроме того, так как эти смазки часто затекают обратно в канал, проделанный подшипником, это может привести к росту температуры и усилению процесса сдвига.


Класс по NLGI

Значительное влияние на класс по NLGI пластичной смазки оказывает вязкость базового масла и консистенция загустителя. Число NLGI является мерой консистенции смазки. Чем выше число NLGI, тем гуще смазка. Диапазон числа NLGI варьируется от 000 (жидкая смазка) до 6 (твердая смазка). Что касается использования высокоскоростных смазок для смазывания подшипников качения, то класс по NLGI повышается, а вязкость базового масла уменьшается. Такой баланс гарантирует, что не будет происходить сепарация масла от загустителя. Зная скоростной фактор подшипника и температуру, при которой он работает, вы можете сделать вывод о подходящем классе смазки по NLGI.


Тип подшипника

Тела качения подшипников бывают разных форм. Форма тела качения оказывает влияние на необходимую вязкость, класс по NLGI и интервал проведения повторной смазки. Кроме того, от формы тела качения зависит площадь смазываемой поверхности между подшипником и кольцом качения. Чем больше площадь этой поверхности, тем больше масла будет выжато из загустителя. В отличие от стандартных шариковых подшипников, нагрузка на подшипники, имеющие большую площадь контакта со смазкой (сферические, цилиндрические, игольчатые, конические роликовые и т.д.), как правило, выше. Повышенная нагрузка приводит к увеличению сепарации и требует базовые масла большей вязкости.

  Тип подшипника   Относительный срок службы смазки 
  Однорядный шариковый подшипник с глубоким желобом   1
  Однорядный радиально-упорный шариковый подшипник   0,625
  Самоустанавливающийся шариковый подшипник   0,77-0,625
  Упорный шариковый подшипник   0,2-0,17
  Однорядный цилиндрический роликовый подшипник    0,625-0,43
  Игольчатый роликовый подшипник   0,3
  Конический роликовый подшипник   0,25
  Сферический роликовый подшипник   0,14-0,08



Температура каплепадения

При выборе высокоскоростной смазки особое внимание следует уделить температуре, при которой подшипник будет работать. Чтобы выбранная смазка выполняла все свои функции при повышенных температурах, необходимо проверить ее температуру каплепадения (ASTM D566 и D2265). Результаты проведенных испытаний можно найти в таблице технических данных смазки. Для проведения испытаний используется маленький колпачок с отверстием в дне, на внутренние стенки которого наносится смазка. Затем в этот колпачок вставляется термометр. При этом термометр не должен касаться смазки. Эта конструкция нагревается до момента отделения капли масла из отверстия в дне чашки. Температура, при которой это происходит, называется температурой каплепадения смазки.

Высокая температура каплепадения важна для подшипников, работающих при повышенных температурах. Тем не менее, если смазка имеет высокую температуру каплепадения, это совсем не значит, что ее базовое масло сможет выдерживать повышенные температуры. Температуру каплепадения не следует приравнивать к максимальной рабочей температуре. Между рабочей температурой подшипника и температурой каплепадения должен быть запас.



Несовместимость

При смене типа смазки важно максимально удалить старую смазку, чтобы свести к минимуму несовместимость с новой смазкой. Если возможно, разберите и почистите оборудование от смазки.

  Стандартная максимальная рабочая температура смазки
  Если температура каплепадения <300°F, следует вычесть 75°F
  Если 300°F<температура каплепадения<400°F, из температуры каплепадения следует вычесть 100°F
  Если температура каплепадения >400°F, следует вычесть 150°F



Для смазки большинства деталей используется смазка общего назначения. Однако при высоком скоростном факторе NDm смазка должна защищать оборудование. Даже если вы подходите к вопросу выбора смазки должным образом и руководствуетесь вышеприведенной информацией, точно выяснить, сможет ли смазка выполнять свои функции именно в вашем случае, можно только после проведения полевых испытаний. Во время проведения полевых испытаний необходимо контролировать температуру подшипников и отсутствие признаков утечки смазки через уплотнения и продувочные отверстия.

И наконец, чтобы выбрать подходящий смазочный материал, не забудьте вычислить скоростной фактор NDm подшипников. Ваше высокоскоростное оборудование прослужит дольше при должном отношении к нему и выборе подходящих смазочных материалов.



6 критериев выбора высокоскоростной смазки

  1. Вязкость базового масла – образует масляную пленку нужной толщины, не  вызывая перегрева и избыточного трения.
  2. Каналообразование – смазка должна обладать хорошими характеристиками каналообразования, так как это предотвратит перегревание по причине вспенивания смазки.
  3. Температура каплепадения – должна значительно превышать значение максимальной рабочей температуры, что обеспечит защиту от маслоотделения и предотвратит возможные неисправности подшипников.
  4. Тип загустителя – загуститель обеспечивает температуру каплепадения, каналообразование и защиту от маслоотделения.
  5. Класс по NLGI – консистенция смазки влияет на маслоотделительные и каналообразующие характеристики пластичных смазок.
  6. Противозадирная присадка – в большинстве случаев смазки используются с противозадирными присадками. Разнообразные химические и твердые присадки предназначены для придания прочности смазочной пленке, уменьшения трения и износа.